Math 4550 Homework 5 Solutions

$$\begin{array}{l}
\boxed{\bigcirc} \mathbb{Z}_8 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\} \\
\mathbb{Z}_8 \text{ is cyclic so all its subgroups are cyclic.} \\
\langle \overline{0} \rangle = \{\overline{0}\} \\
\langle \overline{1} \rangle = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\} = \mathbb{Z}_8 \\
\langle \overline{2} \rangle = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\} \\
\langle \overline{3} \rangle = \{\overline{0}, \overline{3}, \overline{6}, \overline{1}, \overline{4}, \overline{7}, \overline{2}, \overline{5}\} = \mathbb{Z}_8 \\
\langle \overline{4} \rangle = \{\overline{0}, \overline{4}\} \\
\langle \overline{5} \rangle = \{\overline{0}, \overline{5}, \overline{2}, \overline{7}, \overline{4}, \overline{1}, \overline{6}, \overline{3}\} \\
\langle \overline{6} \rangle = \{\overline{0}, \overline{7}, \overline{6}, \overline{5}, \overline{4}, \overline{3}, \overline{2}, \overline{1}\} = \mathbb{Z}_8 \\
\underline{Subgroups}
\end{array}$$

5069100PS {5} {5} {5} {5,4} {6,2,4,6} {6,7,2,3,4,5,6,7}

$$U_6 = \{1, 5, 5^2, 5^3, 5^4, 5^5\}$$
where $S = e^{\frac{2\pi i}{6}}$
and $S^6 = 1$

U6 is cyclic so all its subgroups are cyclic.

$$\langle 1 \rangle = \{1\}$$

 $\langle 9 \rangle = \{1, 9, 9^2, 9^3, 9^4, 9^5\}$
 $\langle 9^2 \rangle = \{1, 9^2, 9^4\}$
 $\langle 9^3 \rangle = \{1, 9^3\}$
 $\langle 9^4 \rangle = \{1, 9^5, 9^4, 9^3, 9^3, 9^3\}$
 $\langle 9^5 \rangle = \{1, 9^5, 9^4, 9^3, 9^3, 9^3, 9^3\}$

Subgroups:

$$U_s = \{1, 9, 9^2, 9^3, 9^4\}$$
 $Q_s = \{0, 7, 2, 3, 7, 5\}$
 $Q(g) = \frac{7}{2}$ is given

Since q is a homomorphism we get that

$$\varphi(xy) = \varphi(x) + \varphi(y)$$

operation

in V_S

in Z_S

We get:

We get:

$$\varphi(1) = \overline{0}$$
 (identity goes to identity)

$$\varphi(\varsigma) = \overline{2} \leftarrow given$$

$$\varphi(\xi) = 2$$
 $\varphi(\xi) = 2$
 $\varphi(\xi) = \varphi(\xi) + \varphi(\xi) = \overline{2} + \overline{2} = \overline{4}$
 $\varphi(\xi^{2}) = \varphi(\xi\xi) = \varphi(\xi\xi) + \varphi(\xi\xi) = \overline{2} + \overline{2} + \overline{2} = \overline{6} = \overline{1}$
 $\varphi(\xi^{3}) = \varphi(\xi\xi) = \varphi(\xi\xi) + \varphi(\xi\xi) + \varphi(\xi\xi) = \overline{2} + \overline{2} + \overline{2} = \overline{8} = \overline{3}$

$$\varphi(g^3) = \varphi(ggg) = \varphi(g) + \varphi(g) + \varphi(g) = \overline{z} + \overline{z} + \overline{z} + \overline{z} = \overline{g} = \overline{g}$$

$$\varphi(\S^3) = \varphi(\S\S\S) = \varphi(\S) + \varphi(\S) + \varphi(\S) = \overline{2} + \overline{1} + \overline{2} + \overline{2} = \overline{8} = \overline{3}$$

$$\varphi(\S^4) = \varphi(\S) + \varphi(\S) + \varphi(\S) + \varphi(\S) = \overline{2} + \overline{1} + \overline{2} + \overline{2} = \overline{8} = \overline{3}$$

Zy={0,7,2,3} is generated by T which has order 4.

Let's find the elements of ZG that have urders that divide 4.

element in 746	order	
0	IJ	
1	6	
2	3	
3	Z	
4	3	
5	6	
		-

To and 3 have orders that divide 4

Thus a homomorphism $\varphi: \mathbb{Z}_4 \to \mathbb{Z}_6$ has two possibilities:

case 1:
$$\varphi(T) = \overline{0}$$

$$\frac{1}{\cos^2 2} \cdot \varphi(T) = 3$$

Let's draw there out.

Use:
$$\varphi(x+y) = \varphi(x) + \varphi(y)$$

operation
in Zy

in Zy

case 1:
$$\varphi(T) = \overline{0}$$

Then:

$$\varphi(\bar{0}) = 0$$
 = identity goes
 $\varphi(\bar{1}) = 0$

$$\varphi(\bar{7}) = 0$$

 $\varphi(\bar{5}) = \varphi(\bar{7}) + \varphi(\bar{7}) + \varphi(\bar{7}) = 0$
 $\varphi(\bar{5}) = \varphi(\bar{7}) + \varphi(\bar{7}) + \varphi(\bar{7}) + \varphi(\bar{7}) = 0$

Then:

Then:
$$\varphi(\bar{0})=\bar{0}\in$$
 identity goes to identity

$$\varphi(7) = 3$$
 $\varphi(2) = \varphi(7) + \varphi(7)$

$$\varphi(2) = \varphi(7) + \varphi(7)$$
= $3 + 3 = 6 = 0$

$$\varphi(3) = \varphi(7) + \varphi(7) + \varphi(7)$$
= $3 + 3 + 3$
= $9 = 3$

(5) $V_3 = \{1, 5, 5^2\}$ is generated by 5 of order 3. Let's find the elements of $\mathbb{Z}_6 = \{5, 7, 2, 3, 4, 5\}$ of order dividing 3.

-			
eliment of ZG	order	_	
(6)		4	the elements 0,2,
ī	6		have urders
2	3)		that divide 3.
3	2_		
4	3)	<u></u>	J
5	6		
	1		

Thus a homomorphism $\varphi: U_3 \longrightarrow \mathbb{Z}_6$ has three Possibilities:

Case 1:
$$\varphi(\varsigma) = \overline{0}$$

case 2:
$$\varphi(g) = 2$$

Let's draw them out.

Use:
$$\varphi(xy) = \varphi(x) + \varphi(y)$$

operation

operation

in 726

Case 1:
$$\varphi(\xi) = \overline{0}$$

Then: identity goes
 $\varphi(1) = \overline{0}$ = to identity
 $\varphi(\xi) = \overline{0}$
 $\varphi(\xi^2) = \varphi(\xi) + \varphi(\xi)$
 $= \overline{0} + \overline{0} = \overline{0}$
 $\varphi(\xi^3) = \varphi(\xi) + \varphi(\xi) + \varphi(\xi)$

= 0+0+0=0

Case 2:
$$\varphi(\xi) = \overline{2}$$

Then:
 $\varphi(1) = \overline{0} \leftarrow \text{identity goes}$
 $\varphi(\xi) = \overline{2}$
 $\varphi(\xi) = \overline{2}$
 $\varphi(\xi^2) = \varphi(\xi) + \varphi(\xi)$
 $= \overline{2} + \overline{2} = \overline{4}$
 $\varphi(\xi^3) = \varphi(\xi) + \varphi(\xi) + \varphi(\xi)$
 $= \overline{2} + \overline{2} + \overline{2}$
 $= \overline{0}$

case 3:
$$\varphi(g) = \overline{4}$$

Then:
 $\varphi(1) = \overline{0} \leftarrow \text{identity goes}$
 $\varphi(g) = \overline{4}$
 $\varphi(g) = \overline{4}$
 $\varphi(g^2) = \varphi(g) + \varphi(g)$
 $= \overline{4} + \overline{4} = \overline{2}$
 $\varphi(g^3) = \varphi(g) + \varphi(g) + \varphi(g)$
 $= \overline{4} + \overline{4} + \overline{4}$
 $= \overline{12} = \overline{0}$

Let's find the elements of Zy that have urder dividing 5.

J
Conly o has order diving 5
diving 5

Thus the unly homomorphism q: Us > Zy must

satisfy $\varphi(\xi) = \overline{0}$.

Then we get:

$$\varphi(\xi) = \overline{0}$$

$$\phi(\zeta_5) = \phi(\zeta/1+\phi(\zeta))$$

$$\widehat{0}$$
=

$$\varphi(z_3) = \varphi(z) + \varphi(z) + \varphi(z)$$

$$\varphi(3^4) = \varphi(8) + \varphi(8) + \varphi(8) + \varphi(8)$$
= $\overline{0} + \overline{0} + \overline{0} + \overline{0}$

Zo={0,7,2,3,4,5} is generated by T which has order 6.

Let's find the elements of \mathbb{Z}_3 that have urders that divide 6.

element in 743	order		
ō	IJ	7	0,T, and Z have orders that
T	3)		divide 6.
2	3)	کسے	

Thus a homomorphism $\varphi: \mathbb{Z}_6 \to \mathbb{Z}_3$ has three possibilities:

case 1:
$$\varphi(T) = \overline{D}$$

case 2: $\varphi(T) = \overline{1}$

case 3: $\varphi(T) = \overline{2}$

Let's draw there out.

Use:
$$\varphi(x+y) = \varphi(x) + \varphi(y)$$

operation
in Z6

in Z3

case 1.
$$\varphi(T) = \overline{0}$$

Then:
$$\varphi(\delta) = \overline{0}$$
 = identity goes to identity

And,
$$\varphi(\bar{z}) = \varphi(\bar{1}+\bar{1})$$

= $\varphi(\bar{1})+\varphi(\bar{1})$
= $\bar{0}+\bar{0}$
= $\bar{0}$

cuse 2:
$$\phi(T) = T$$

Then:

$$\varphi(\bar{3}) = \varphi(\bar{1}) + \varphi(\bar{1}) + \varphi(\bar{1})$$
= $\bar{1} + \bar{1} + \bar{1} = \bar{0}$

cuse 3:
$$\varphi(T)=\overline{2}$$

Then:

$$\varphi(z) = \varphi(\tau + 1)$$

= $\varphi(\tau) + \varphi(\tau)$
= $z + z = 4 = 1$

$$\varphi(\bar{3}) = \varphi(\bar{1}) + \varphi(\bar{1}) + \varphi(\bar{1})$$

$$= \bar{2} + \bar{2} + \bar{2} = \bar{6} = \bar{0}$$

Similarly,

$$\varphi(\hat{q}) = 2 + 2 + 2 + 2$$

$$= 8 = 2$$

$$=8=2$$
 $\varphi(5)=2+2+2+2+2$
 $=10=1$

(8)
$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

is an infinite cyclic group. I is a generator.
We can send T to any element of $\mathbb{Z}_3 = \{\overline{0}, \overline{1}, \overline{2}\}$.

case 1:
$$\phi(1) = 0$$

$$\varphi(0) = 0$$
 $\varphi(1) = 0$
 $\varphi(1) = 0$
 $\varphi(2) = \varphi(1+1)$
 $= \varphi(1) + \varphi(1)$
 $= 0$
 $\varphi(3) = \varphi(1) + \varphi(1) + \varphi(1)$
 $= 0 + 0 + 0 = 0$

Similarly,
$$\varphi(n) = \bar{0}$$
 if $n > 0$
 $\varphi(-1) = [\varphi(1)]^{-1}$
 $= \bar{0}^{-1} = \bar{0}$

$$\varphi(-2) = \varphi(-1) + \varphi(-1)$$

= $\overline{0} + \overline{0} = \overline{0}$

Similarly p(n)= 0 if n<0.

So,
$$\varphi(n) = \overline{0}$$
 for all N.

Then:

$$\varphi(0) = 0$$
Then:

 $\varphi(0) = 0$
Then:

 $\varphi(1) = 1$
 $\varphi(1) = 1$
 $\varphi(2) = \varphi(1+1)$
 $= \varphi(1) + \varphi(1)$
 $= 1 + 1 + 1 = 0$
 $\varphi(4) = 1$
 $\varphi(5) = 2$
 $\varphi(6) = 0$
and so on...

 $\varphi(-1) = [\varphi(1)]$
 $= 1 - 2$
 $\varphi(-1) = [\varphi(1)]$
 $\varphi(-1) = [\varphi$

Then:

$$\varphi(0) = 0$$
 $\varphi(1) = 2$
 $\varphi(1) = 2$
 $\varphi(1) = 2$
 $\varphi(1) + \varphi(1)$
 $= \varphi(1) + \varphi(1)$
 $= 2 + 2 + 2 + 2 = 6 = 0$
 $\varphi(4) = 2$
 $\varphi(5) = 7$
 $\varphi(6) = 0$
 $\varphi(1) = 2$
 $\varphi(6) = 0$
 $\varphi(1) = 2$
 $\varphi(1) = 2$
 $\varphi(2) = 2$
 $\varphi(3) = 2$
 $\varphi(4) = 2$
 $\varphi(5) = 7$
 $\varphi(6) = 0$
 $\varphi(6) = 0$
 $\varphi(1) = 2$
 $\varphi(2) = 2$
 $\varphi(3) = 2$
 $\varphi(1) = 2$
 $\varphi(1) = 2$
 $\varphi(2) = 2$
 $\varphi(3) = 2$
 $\varphi(1) = 2$
 $\varphi(1) = 2$
 $\varphi(2) = 2$
 $\varphi(3) = 2$
 $\varphi(1) = 2$
 $\varphi(2) = 2$
 $\varphi(3) = 2$
 $\varphi(3) = 2$
 $\varphi(1) = 2$
 $\varphi(2) = 2$
 $\varphi(3) = 2$
 $\varphi(1) = 2$
 $\varphi(2) = 2$
 $\varphi(3) = 2$
 $\varphi(1) = 2$
 $\varphi(2) = 2$
 $\varphi(3) = 2$

Suppose $\varphi: \mathbb{Z} \to \mathbb{Z}$ is a homomorphism with $\varphi(1)=5$. Since φ is a homomorphism we know that $\varphi(x+y)=\varphi(x)+\varphi(y)$ for all $x,y\in\mathbb{Z}$.

Then:

$$\varphi(0) = 0$$
 $\varphi(1) = 5$
 $\varphi(1) = 9$
 $\varphi(1) = \varphi(1) + \varphi(1) = 5 + 5 = 10$
 $\varphi(2) = \varphi(1+1+1) = \varphi(1) + \varphi(1) + \varphi(1) = 5 + 5 = 15$
 $\varphi(3) = \varphi(1+1+1) = \varphi(1) + \varphi(1) + \varphi(1) = 5 + 5 = 15$
 \vdots

and so on, if no then $\varphi(n) = \varphi(1) + \varphi(1) + \cdots + \varphi(1) = \underbrace{5+5+\cdots+5}_{n \text{ times}} = 5n$

$$\varphi(-1) = \varphi(1)^{-1} = 5^{-1} = -5$$

here I mean inverse in the additive group Z

$$\varphi(-2) = \varphi(-1) + \varphi(-1) = -5 - 5 = -10$$

and so on, if n<0 then

$$\varphi(n) = \varphi(-1) + \varphi(-1) + \cdots + \varphi(-1) = -S - S - \cdots - S = 5n$$
 $-n + i mes$

Thus, $\varphi(n) = 5n$ for all $n \in \mathbb{Z}$.

(b) This follows from part (a).

If x has infinite order then (x)

is infinite and then so is (x).

Thus x' has infinite order.

The x has finite order n, then

If x has finite order n, then $N = |\langle x \rangle| = |\langle x^{-1} \rangle|$ $N = |\langle x \rangle| = |\langle x^{-1} \rangle|$ (part (a))

So, x'har order n also.

Let m∈Q with m, n∈Z, n≠0.

We will show that m cannot generate a.

If = 0, then <=>= {0}.

S. in this case m does not generate Q.

Suppose = +0.

Then,

$$\langle \frac{1}{2} \rangle = \{ ..., -\frac{3m}{2}, -\frac{2m}{2}, -\frac{m}{2}, 0, \frac{m}{2}, \frac{2m}{2}, \frac{3m}{2}, ... \}$$

N. te that == EQ but == 4 <=>.

Thus, m dues not generate a.

Thus, in either case m does not generate a So, a is not cyclic.

(M(b)) (Method 1)
Suppose IR is cyclic. Rican infinite
Suppose IR is cyclic. Thin from class, since IR is an infinite cyclic group, there exists an cyclic group, there exists an
is an or phism $\varphi: \mathbb{Z} \to \mathbb{R}$.
But then P is a bijection I and IR.
(one-to-one and one-th 3450 we know
(one-to-one and onto) However, from Math 3450 we know that I countable and that I countable.
that 2"
That is, no such bijection exists. That is, no such bijection exists.
That is, not cyclic. Hence R is not cyclic.
Hence In 13.

Method Zi Do a similar proof to What I wrote for 11(a).

$$\varphi_3: \mathbb{Z} \to \mathbb{Z}_3$$

$$\varphi_3(x) = \overline{x}$$

Thus,

$$\varphi(0) = 0$$
 $\varphi(1) = 0$
 $\varphi(1) = 0$
 $\varphi(2) = 0$
 $\varphi(3) = 0$
 $\varphi(4) = 0$
 $\varphi(4) = 0$
 $\varphi(5) = 0$
 $\varphi(5) = 0$
 $\varphi(5) = 0$

$$\varphi(-1) = -1 = \overline{2}$$

$$\varphi(-2) = -2 = 1$$

$$\varphi(-2) = -3 = 0$$

$$\varphi(-3) = -3 = 0$$

$$\varphi(-4) = -4 = 2$$

$$\varphi(-9) = -5 = 1$$
 $\varphi(-5) = -5 = 1$

Given X, y E Z we have

$$\varphi_{n}(x+y) = \overline{x+y} = \overline{x+y} = \varphi_{n}(x) + \varphi_{n}(y)$$

def of operation

 $\varphi_{n}(x+y) = \overline{x+y} = \overline{x+y} = \varphi_{n}(x) + \varphi_{n}(y)$

Thus, Pr is a homomorphism.

Pris onto:

Let XE Zn.

Then $x \in \mathbb{Z}$ and $\varphi_{\lambda}(x) = \widehat{x}$.

Thus, on is onto.

Pr is not one-to-one.

Note that $P_{\Lambda}(0) = \overline{0}$

and $P_n(n)=\overline{n}=\overline{0}$

Thus, $\varphi_{n}(a) = \varphi_{n}(n)$ but $0 \neq n$.

So, on is not one-to-one.

(12)(d)

We have that

$$ker(\varphi_n) = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } \varphi_n(x) = \overline{0} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x = \overline{0} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x = \overline{0} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x = \overline{0} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x = \overline{0} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x = \overline{0} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x = \overline{0} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x = \overline{0} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x = \overline{0} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x = \overline{0} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\} \\ = \left\{ \begin{array}{l} x \mid x \in \mathbb{Z} \text{ and } x \in \mathbb{Z} \end{array} \right\}$$

///